Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Chempluschem ; 87(11): e202200256, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36220343

RESUMO

High-resolution mass spectrometry was used for the label-free, direct localization and relative quantification of CMC+ -modifications of a neomycin-sensing riboswitch aptamer domain in the absence and presence of the aminoglycoside ligands neomycin B, ribostamycin, and paromomycin. The chemical probing and MS data for the free riboswitch show high exposure to solvent of the uridine nucleobases U7, U8, U13, U14, U18 as part of the proposed internal and apical loops, but those of U10 and U21 as part of the proposed internal loop were found to be far less exposed than expected. Thus, our data are in better agreement with the proposed secondary structure of the riboswitch in complexes with aminoglycosides than with that of free RNA. For the riboswitch in complexes with neomycin B, ribostamycin, and paromomycin, we found highly similar CMC+ -modification patterns and excellent agreement with previous NMR studies. Differences between the chemical probing and MS data in the absence and presence of the aminoglycoside ligands were quantitative rather than qualitative (i. e., the same nucleobases were labeled, but to different extents) and can be rationalized by stabilization of both the proposed bulge and the apical loop by aminoglycoside binding. Our study shows that chemical probing and mass spectrometry can provide important structural information and complement other techniques such as NMR spectroscopy.


Assuntos
Riboswitch , Neomicina/química , Neomicina/metabolismo , Ribostamicina/química , Ribostamicina/metabolismo , RNA , Paromomicina/química , Paromomicina/metabolismo , Framicetina , Aminoglicosídeos , Antibacterianos , Ligantes , Oligonucleotídeos/química , Espectrometria de Massas
2.
Bioorg Chem ; 126: 105824, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35636122

RESUMO

Despite their clinical importance, saving numerous human lifes, over- and mis-uses of antibiotics have created a strong selective pressure on bacteria, which induces the emergence of (multi)resistant strains. Antibioresistance is becoming so pregnant that since 2017, WHO lists bacteria threatening most human health (AWaRe, ESKAPE lists), and those for which new antibiotics are urgently needed. Since the century turn, this context is leading to a burst in the chemical synthesis of new antibiotics, mostly derived from natural antibiotics. Among them, aminoglycosides, and especially the neomycin family, exhibit broad spectrum of activity and remain clinically useful drugs. Therefore, numerous endeavours have been undertaken to modify aminoglycosides with the aim of overcoming bacterial resistances. After having replaced antibiotic discovery into an historical perspective, briefly surveyed the aminoglycoside mode of action and the associated resistance mechanisms, this review emphasized the chemical syntheses performed on the neomycin family and the corresponding structure activity relationships in order to reveal the really efficient modifications able to convert neomycin and its analogues into future drugs. This review would help researchers to strategically design novel aminoglycoside derivatives for the development of clinically viable drug candidates.


Assuntos
Infecções Bacterianas , Neomicina , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antibacterianos/química , Bactérias , Humanos , Neomicina/química , Neomicina/farmacologia , Paromomicina/química , Paromomicina/farmacologia
3.
Molecules ; 25(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916994

RESUMO

The control of leishmaniases, a complex parasitic disease caused by the protozoan parasite Leishmania, requires continuous innovation at the therapeutic and vaccination levels. Chitosan is a biocompatible polymer administrable via different routes and possessing numerous qualities to be used in the antileishmanial strategies. This review presents recent progress in chitosan research for antileishmanial applications. First data on the mechanism of action of chitosan revealed an optimal in vitro intrinsic activity at acidic pH, high-molecular-weight chitosan being the most efficient form, with an uptake by pinocytosis and an accumulation in the parasitophorous vacuole of Leishmania-infected macrophages. In addition, the immunomodulatory effect of chitosan is an added value both for the treatment of leishmaniasis and the development of innovative vaccines. The advances in chitosan chemistry allows pharmacomodulation on amine groups opening various opportunities for new polymers of different size, and physico-chemical properties adapted to the chosen routes of administration. Different formulations have been studied in experimental leishmaniasis models to cure visceral and cutaneous leishmaniasis, and chitosan can act as a booster through drug combinations with classical drugs, such as amphotericin B. The various architectural possibilities given by chitosan chemistry and pharmaceutical technology pave the way for promising further developments.


Assuntos
Antiprotozoários/administração & dosagem , Quitosana/química , Portadores de Fármacos/química , Vacinas contra Leishmaniose/administração & dosagem , Leishmaniose/tratamento farmacológico , Anfotericina B/química , Anfotericina B/farmacologia , Animais , Antimônio/química , Antiprotozoários/farmacologia , Materiais Biocompatíveis/química , Curcumina/química , Composição de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Vacinas contra Leishmaniose/química , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Paromomicina/química , Triterpenos Pentacíclicos/química , Polímeros/química , Rifampina/química , Selênio/química , Tiomalatos/química , Titânio/química , Triterpenos/química , Ácido Betulínico
4.
J Mol Graph Model ; 100: 107697, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32739642

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is a membrane-bound zinc metallopeptidase that generates the vasodilatory peptide angiotensin 1-7 and thus performs a protective role in heart disease. It is considered an important therapeutic target in controlling the COVID-19 outbreak, since SARS-CoV-2 enters permissive cells via an ACE2-mediated mechanism. The present in silico study attempted to repurpose existing drugs for use as prospective viral-entry inhibitors targeting human ACE2. Initially, a clinically approved drug library of 7,173 ligands was screened against the receptor using molecular docking, followed by energy minimization and rescoring of docked ligands. Finally, potential binders were inspected to ensure molecules with different scaffolds were engaged in favorable contacts with both the metal cofactor and the critical residues lining the receptor's active site. The results of the calculations suggest that lividomycin, burixafor, quisinostat, fluprofylline, pemetrexed, spirofylline, edotecarin, and diniprofylline emerge as promising repositionable drug candidates for stabilizing the closed (substrate/inhibitor-bound) conformation of ACE2, thereby shifting the relative positions of the receptor's critical exterior residues recognized by SARS-CoV-2. This study is among the rare ones in the relevant scientific literature to search for potential ACE2 inhibitors. In practical terms, the drugs, unmodified as they are, may be introduced into the therapeutic armamentarium of the ongoing fight against COVID-19 now, or their scaffolds may serve as rich skeletons for designing novel ACE2 inhibitors in the near future.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Antivirais/química , Betacoronavirus/química , Peptidil Dipeptidase A/química , Bibliotecas de Moléculas Pequenas/química , Motivos de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/enzimologia , COVID-19 , Carbazóis/química , Domínio Catalítico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Reposicionamento de Medicamentos , Difilina/análogos & derivados , Difilina/química , Interações Hospedeiro-Patógeno , Humanos , Ácidos Hidroxâmicos/química , Ligantes , Simulação de Acoplamento Molecular , Pandemias , Paromomicina/análogos & derivados , Paromomicina/química , Pemetrexede/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , SARS-CoV-2 , Relação Estrutura-Atividade , Termodinâmica
5.
Chem Phys Lipids ; 231: 104946, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32621810

RESUMO

In the current study, we have focused on the design, development and in-vitro evaluation of d-α-tocopheryl polyethylene glycol 1000 succinate modified amphotericin B (AmB) and paromomycin (PM) loaded solid lipid nanoparticles (TPGS-SLNPs) by emulsion-solvent evaporation method. The optimized TPGS-SLNPs had a mean particle size of 199.4 ± 18.9 nm with a polydispersity index of 0.22 ± 0.14 and entrapment efficiency for AmB and PM was found to be 94 ± 1.5 % and 89 ± 0.50 % respectively. The prepared lipid nanoparticles were characterized by Powdered X-ray diffraction study, Fourier transform infrared spectroscopy, Nuclear magnetic resonance spectroscopy to confirm the absence of any interaction between lipids and drugs. The developed formulation showed a sustained drug release over a period of 48 h and were stable at different temperatures. Finally, TPGS-SLNPs (1 µg/mL) was found to significantly (P < 0.001) mitigate the intra-cellular amastigote growth compared to free AmB. The results obtained suggest TPGS-SLNPs could be an efficient carrier for delivering poorly water-soluble drugs and efficiently enhance its therapeutic potential.


Assuntos
Anfotericina B/farmacologia , Antiprotozoários/farmacologia , Sistemas de Liberação de Medicamentos , Leishmania donovani/efeitos dos fármacos , Paromomicina/farmacologia , Anfotericina B/química , Animais , Antiprotozoários/química , Linhagem Celular , Portadores de Fármacos/química , Lipídeos/química , Camundongos , Nanopartículas/química , Testes de Sensibilidade Parasitária , Paromomicina/química , Tamanho da Partícula , Polietilenoglicóis/química , Succinatos/química , Propriedades de Superfície
6.
Sci Rep ; 10(1): 12243, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699361

RESUMO

The development of an effective oral therapeutics is an immediate need for the control and elimination of visceral leishmaniasis (VL). We exemplify the preparation and optimization of 2-hydroxypropyl-ß-cyclodextrin (HPCD) modified solid lipid nanoparticles (SLNs) based oral combinational cargo system of Amphotericin B (AmB) and Paromomycin (PM) against murine VL. The emulsion solvent evaporation method was employed to prepare HPCD modified dual drug-loaded solid lipid nanoparticles (m-DDSLNs). The optimized formulations have a mean particle size of 141 ± 3.2 nm, a polydispersity index of 0.248 ± 0.11 and entrapment efficiency for AmB and PM was found to be 96% and 90% respectively. The morphology of m-DDSLNs was confirmed by scanning electron microscopy and transmission electron microscopy. The developed formulations revealed a sustained drug release profile upto 57% (AmB) and 21.5% (PM) within 72 h and were stable at both 4 °C and 25 °C during short term stability studies performed for 2 months. Confocal laser scanning microscopy confirmed complete cellular internalization of SLNs within 24 h of incubation. In vitro cytotoxicity study against J774A.1 macrophage cells confirmed the safety and biocompatibility of the developed formulations. Further, m-DDSLNs did not induce any hepatic/renal toxicities in Swiss albino mice. The in vitro simulated study was performed to check the stability in simulated gastric fluids and simulated intestinal fluids and the release was found almost negligible. The in vitro anti-leishmanial activity of m-DDSLNs (1 µg/ml) has shown a maximum percentage of inhibition (96.22%) on intra-cellular amastigote growth of L. donovani. m-DDSLNs (20 mg/kg × 5 days, p.o.) has significantly (P < 0.01) reduced the liver parasite burden as compared to miltefosine (3 mg/kg × 5 days, p.o.) in L. donovani-infected BALB/c mice. This work suggests that the superiority of as-prepared m-DDSLNs as a promising approach towards the oral delivery of anti-leishmanial drugs.


Assuntos
Anfotericina B/química , Anfotericina B/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Nanopartículas/química , Paromomicina/química , Paromomicina/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Linhagem Celular , Emulsões/química , Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão/métodos , Tamanho da Partícula , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/farmacologia
7.
J Pharm Biomed Anal ; 185: 113245, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199328

RESUMO

A highly sensitive method was developed to quantitate the antileishmanial agent paromomycin in human plasma, with a lower limit of quantification of 5 ng/mL. Separation was achieved using an isocratic ion-pair ultra-high performance liquid chromatographic (UPLC) method with a minimal concentration of heptafluorobutyric acid, which was coupled through an electrospray ionization interface to a triple quadrupole - linear ion trap mass spectrometer for detection. The method was validated over a linear calibration range of 5 to 1000 ng/mL (r2≥0.997) with inter-assay accuracies and precisions within the internationally accepted criteria. Volumes of 50 µL of human K2EDTA plasma were processed by using a simple protein precipitation method with 40 µL 20 % trichloroacetic acid. A good performance was shown in terms of recovery (100 %), matrix effect (C.V. ≤ 12.0 %) and carry-over (≤17.5 % of the lower limit of quantitation). Paromomycin spiked to human plasma samples was stable for at least 24 h at room temperature, 6 h at 35 °C, and 104 days at -20 °C. Paromomycin adsorbs to glass containers at low concentrations, and therefore acidic conditions were used throughout the assay, in combination with polypropylene tubes and autosampler vials. The assay was successfully applied in a pharmacokinetic study in visceral leishmaniasis patients from Eastern Africa.


Assuntos
Antiprotozoários/sangue , Monitoramento de Medicamentos/métodos , Leishmaniose Visceral/tratamento farmacológico , Paromomicina/sangue , Adsorção , África Oriental , Antiprotozoários/administração & dosagem , Antiprotozoários/química , Antiprotozoários/farmacocinética , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/normas , Estabilidade de Medicamentos , Humanos , Injeções Intramusculares , Leishmaniose Visceral/sangue , Limite de Detecção , Paromomicina/administração & dosagem , Paromomicina/química , Paromomicina/farmacocinética , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Ácido Tricloroacético/química
8.
Methods Mol Biol ; 2113: 111-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006311

RESUMO

Native electrospray ionization mass spectrometry (native ESI-MS) is a powerful tool to investigate non-covalent biomolecular interactions. It has been widely used to study protein complexes, but only few examples are described for the analysis of complexes involving RNA-RNA interactions. Here, we provide a detailed protocol for native ESI-MS analysis of RNA complexes. As an example, we present the analysis of the HIV-1 genomic RNA dimerization initiation site (DIS) extended duplex dimer bound to the aminoglycoside antibiotic lividomycin.


Assuntos
HIV-1/metabolismo , Paromomicina/análogos & derivados , RNA Viral/química , RNA Viral/metabolismo , Dimerização , HIV-1/genética , Ligantes , Conformação de Ácido Nucleico , Paromomicina/química , Paromomicina/metabolismo , Espectrometria de Massas por Ionização por Electrospray
9.
Biomolecules ; 9(11)2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718000

RESUMO

The identification and clarification of the mechanisms of action of drugs used against leishmaniasis may improve their administration regimens and prevent the development of resistant strains. Herein, for the first time, we describe the structure of the putatively essential Ser/Thr kinase LmjF.22.0810 from Leishmania major. Molecular dynamics simulations were performed to assess the stability of the kinase model. The analysis of its sequence and structure revealed two druggable sites on the protein. Furthermore, in silico docking of small molecules showed that aminoglycosides preferentially bind to the phosphorylation site of the protein. Given that transgenic LmjF.22.0810-overexpressing parasites displayed less sensitivity to aminoglycosides such as paromomycin, our predicted models support the idea that the mechanism of drug resistance observed in those transgenic parasites is the tight binding of such compounds to LmjF.22.0810 associated with its overexpression. These results may be helpful to understand the complex machinery of drug response in Leishmania.


Assuntos
Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Paromomicina/efeitos adversos , Proteínas Serina-Treonina Quinases/genética , Antiprotozoários , Resistência a Medicamentos/genética , Humanos , Leishmania major/enzimologia , Leishmania major/patogenicidade , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/parasitologia , Simulação de Dinâmica Molecular , Paromomicina/química , Proteínas Serina-Treonina Quinases/química
10.
ACS Infect Dis ; 5(10): 1718-1730, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31436080

RESUMO

A series of derivatives of the 4,5-disubstituted class of 2-deoxystreptamine aminoglycoside antibiotics neomycin, paromomycin, and ribostamycin was prepared and assayed for (i) their ability to inhibit protein synthesis by bacterial ribosomes and by engineered bacterial ribosomes carrying eukaryotic decoding A sites, (ii) antibacterial activity against wild type Gram negative and positive pathogens, and (iii) overcoming resistance due to the presence of aminoacyl transferases acting at the 2'-position. The presence of five suitably positioned residual basic amino groups was found to be necessary for activity to be retained upon removal or alkylation of the 2'-position amine. As alkylation of the 2'-amino group overcomes the action of resistance determinants acting at that position and in addition results in increased selectivity for the prokaryotic over eukaryotic ribosomes, it constitutes an attractive modification for introduction into next generation aminoglycosides. In the neomycin series, the installation of small (formamide) or basic (glycinamide) amido groups on the 2'-amino group is tolerated.


Assuntos
Aminoglicosídeos/síntese química , Aminoglicosídeos/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Sítios de Ligação , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Hexosaminas , Humanos , Testes de Sensibilidade Microbiana , Neomicina/química , Neomicina/farmacologia , Paromomicina/química , Paromomicina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/metabolismo , Relação Estrutura-Atividade
11.
Nucleic Acids Res ; 47(9): 4883-4895, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30957848

RESUMO

The development of synthetic riboswitches has always been a challenge. Although a number of interesting proof-of-concept studies have been published, almost all of these were performed with the theophylline aptamer. There is no shortage of small molecule-binding aptamers; however, only a small fraction of them are suitable for RNA engineering since a classical SELEX protocol selects only for high-affinity binding but not for conformational switching. We now implemented RNA Capture-SELEX in our riboswitch developmental pipeline to integrate the required selection for high-affinity binding with the equally necessary RNA conformational switching. Thus, we successfully developed a new paromomycin-binding synthetic riboswitch. It binds paromomycin with a KD of 20 nM and can discriminate between closely related molecules both in vitro and in vivo. A detailed structure-function analysis confirmed the predicted secondary structure and identified nucleotides involved in ligand binding. The riboswitch was further engineered in combination with the neomycin riboswitch for the assembly of an orthogonal Boolean NOR logic gate. In sum, our work not only broadens the spectrum of existing RNA regulators, but also signifies a breakthrough in riboswitch development, as the effort required for the design of sensor domains for RNA-based devices will in many cases be much reduced.


Assuntos
Aptâmeros de Nucleotídeos/química , RNA/química , Riboswitch/genética , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/genética , Ligantes , Neomicina/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Paromomicina/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Teofilina/química
12.
Nanomedicine (Lond) ; 14(4): 387-406, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30688557

RESUMO

AIM: The present study evaluates the efficacy of paromomycin (PM)-loaded mannosylated thiomeric nanoparticles for the targeted delivery to pathological organs for the oral therapy of visceral leishmaniasis. MATERIALS & METHODS: Mannosylated thiolated chitosan (MTC)-coated PM-loaded PLGA nanoparticles (MTC-PLGA-PM) were synthesized and evaluated for morphology, drug release, permeation enhancing and antileishmanial potential. RESULTS: MTC-PLGA-PM were spherical in shape with a size of 391.24 ± 6.91 nm and an encapsulation efficiency of 67.16 ± 14%. Ex vivo permeation indicated 12.73-fold higher permeation of PM with MTC-PLGA-PM against the free PM. Flow cytometry indicated enhanced macrophage uptake and parasite killing in Leishmania donovani infected macrophage model. In vitro antileishmanial activity indicated 36-fold lower IC50 for MTC-PLGA-PM as compared with PM. The in vivo studies indicated 3.6-fold reduced parasitic burden in the L. donovani infected BALB/c mice model. CONCLUSION: The results encouraged the concept of MTC-PLGA-PM nanoparticles as promising strategy for visceral leishmaniasis.


Assuntos
Leishmaniose Visceral/tratamento farmacológico , Nanopartículas/química , Paromomicina/química , Paromomicina/uso terapêutico , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/química , Antiprotozoários/uso terapêutico , Células Cultivadas , Citometria de Fluxo , Lectinas Tipo C/metabolismo , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/patogenicidade , Leishmaniose Visceral/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Paromomicina/administração & dosagem , Receptores de Superfície Celular/metabolismo
13.
J Biomol Struct Dyn ; 37(6): 1582-1596, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29633917

RESUMO

The bacterial ribosome is an established target for anti-bacterial therapy since decades. Several inhibitors have already been developed targeting both defined subunits (50S and 30S) of the ribosome. Aminoglycosides and tetracyclines are two classes of antibiotics that bind to the 30S ribosomal subunit. These inhibitors can target multiple active sites on ribosome that have a complex structure. To screen putative inhibitors against 30S subunit of the ribosome, the crystal structures in complex with various known inhibitors were analyzed using pharmacophore modeling approach. Multiple active sites were considered for building energy-based three-dimensional (3D) pharmacophore models. The generated models were validated using enrichment factor on decoy data-set. Virtual screening was performed using the developed 3D pharmacophore models and molecular interaction towards the 30S ribosomal unit was analyzed using the hits obtained for each pharmacophore model. The hits that were common to both streptomycin and paromomycin binding sites were identified. Further, to predict the activity of these hits a robust 2D-QSAR model with good predictive ability was developed using 16 streptomycin analogs. Hence, the developed models were able to identify novel inhibitors that are capable of binding to multiple active sites present on 30S ribosomal subunit.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Paromomicina/química , Subunidades Ribossômicas Menores de Bactérias/química , Estreptomicina/química , Sítios de Ligação , Domínio Catalítico , Descoberta de Drogas , Ligantes , Testes de Sensibilidade Microbiana , Estrutura Molecular , Paromomicina/farmacologia , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estreptomicina/farmacologia
14.
Nat Commun ; 8(1): 1589, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150609

RESUMO

Leishmania is a single-celled eukaryotic parasite afflicting millions of humans worldwide, with current therapies limited to a poor selection of drugs that mostly target elements in the parasite's cell envelope. Here we determined the atomic resolution electron cryo-microscopy (cryo-EM) structure of the Leishmania ribosome in complex with paromomycin (PAR), a highly potent compound recently approved for treatment of the fatal visceral leishmaniasis (VL). The structure reveals the mechanism by which the drug induces its deleterious effects on the parasite. We further show that PAR interferes with several aspects of cytosolic translation, thus highlighting the cytosolic rather than the mitochondrial ribosome as the primary drug target. The results also highlight unique as well as conserved elements in the PAR-binding pocket that can serve as hotspots for the development of novel therapeutics.


Assuntos
Leishmania/metabolismo , Paromomicina/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Microscopia Crioeletrônica , Citosol/efeitos dos fármacos , Citosol/metabolismo , Humanos , Leishmania/genética , Leishmania/ultraestrutura , Modelos Moleculares , Paromomicina/química , Paromomicina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/ultraestrutura , Homologia de Sequência de Aminoácidos
15.
Nucleic Acids Res ; 45(21): 12529-12535, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036479

RESUMO

The aminoglycoside resistance conferred by an N1-methylation of A1408 in 16S rRNA by a novel plasmid-mediated methyltransferase NpmA can be a future health threat. In the present study, we have determined crystal structures of the bacterial ribosomal decoding A site with an A1408m1A antibiotic-resistance mutation both in the presence and absence of aminoglycosides. G418 and paromomycin both possessing a 6'-OH group specifically bind to the mutant A site and disturb its function as a molecular switch in the decoding process. On the other hand, binding of gentamicin with a 6'-NH3+ group to the mutant A site could not be observed in the present crystal structure. These observations agree with the minimum inhibitory concentration of aminoglycosides against Escherichia coli. In addition, one of our crystal structures suggests a possible conformational change of A1408 during the N1-methylation reaction by NpmA. The structural information obtained explains how bacteria acquire resistance against aminoglycosides along with a minimum of fitness cost by the N1-methylation of A1408 and provides novel information for designing the next-generation aminoglycoside.


Assuntos
Aminoglicosídeos/química , RNA Bacteriano/química , RNA Ribossômico 16S/química , Adenosina/análogos & derivados , Adenosina/química , Sítios de Ligação , Farmacorresistência Bacteriana/genética , Gentamicinas/química , Gentamicinas/metabolismo , Metilação , Modelos Moleculares , Mutação , Paromomicina/química , Paromomicina/metabolismo , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
16.
J Liposome Res ; 27(3): 234-248, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28874072

RESUMO

Conventional chemotherapy for leishmaniasis includes considerably toxic drugs and reports of drug-resistance are not uncommon. Liposomal encapsulated drugs appear as an option for the treatment of leishmaniasis, providing greater efficacy for the active and reducing its side effects by promoting superior tissue absorption, favouring drug penetration into the macrophages, and retarding its clearance from the site of action. In this paper, a review on the advances achieved with liposome-based anti-leishmaniasis drug delivery systems is presented. Formulations prepared with either conventional or modified (sugar-coated, cationic, niosomes, peptides- and antibodies-bounded) liposomes for the delivery of pentavalent antimonials, amphotericin B, pentamidine, paromomycyn, and miltefosine were covered. This literature review depicts a scenario of no effective therapeutic agents for the treatment of this neglected disease, where liposomal formulations appear to improve the effectiveness of the available antileishmania agents.


Assuntos
Antiprotozoários/química , Antiprotozoários/uso terapêutico , Leishmaniose/tratamento farmacológico , Lipossomos/química , Anfotericina B/química , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Animais , Antiprotozoários/farmacologia , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Nanopartículas , Paromomicina/química , Paromomicina/farmacologia , Paromomicina/uso terapêutico , Tamanho da Partícula , Pentamidina/química , Pentamidina/farmacologia , Pentamidina/uso terapêutico , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Propriedades de Superfície
17.
Colloids Surf B Biointerfaces ; 157: 242-253, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28601753

RESUMO

The study of molecular interactions of drug-protein are extremely important from the biological aspect in all living organisms, and therefore such type of investigation hold a tremendous significance in rational drug design and discovery. In the present study, the molecular interactions between paromomycin (PAR) and human serum albumin (HSA) have been studied by different biophysical techniques and validated by in-silico approaches. The results obtained from Ultraviolet-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FT-IR) demonstrated a remarkable change upon the complexation of PAR with HSA. Circular Dichroism (CD), Dynamic Light Scattering (DLS) and Resonance Rayleigh scattering (RRS) results revealed a significant secondary structure alteration and reduction of hydrodynamic radii upon the conjugation of PAR with HSA. The fluorescence spectroscopy results also apparently revealed the static quenching mechanism. The number of binding sites, binding constants, and Gibbs free energy values were calculated to illustrate the nature of intermolecular interactions. Similarly, the in-silico docking and molecular dynamics simulation clearly explain the theoretical basis of the binding mechanism of PAR with HSA. The experimental and docking approaches suggested that PAR binds to the hydrophobic cavity site I of HSA. The finding of present investigation will provide binding insight of PAR and associated alterations in the stability and conformation of HSA.


Assuntos
Paromomicina/química , Albumina Sérica Humana/química , Dicroísmo Circular , Estabilidade de Medicamentos , Difusão Dinâmica da Luz , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
18.
Environ Geochem Health ; 39(6): 1595-1605, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28551881

RESUMO

The occurrence of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) has been intensively investigated for wastewater treatment systems treating single class of antibiotic in recent years. However, the impacts of alternately occurring antibiotics in antibiotic production wastewater on the behavior of ARGs in biological treatment systems were not well understood yet. Herein, techniques including high-capacity quantitative PCR and quantitative PCR (qPCR) were used to investigate the behavior of ARGs in an anaerobic-aerobic full-scale system. The system alternately treated three kinds of antibiotic production wastewater including ribostamycin, spiramycin and paromomycin, which referred to stages 1, 2 and 3. The aminoglycoside ARGs (52.1-79.3%) determined using high-capacity quantitative PCR were the most abundant species in all sludge samples of the three stages. The total relative abundances of macrolide-lincosamide-streptogramin (MLS) resistance genes and aminoglycoside resistance genes measured using qPCR were significantly higher (P < 0.05) in aerobic sludge than in sewage sludge. However, the comparison of ARGs acquired from three alternate stages revealed that MLS genes and the aminoglycoside ARGs did not vary significantly (P > 0.05) in both aerobic and anaerobic sludge samples. In aerobic sludge, one acetyltransferase gene (aacA4) and the other three nucleotidyltransferase genes (aadB, aadA and aadE) exhibited positive correlations with intI1 (r 2 = 0.83-0.94; P < 0.05), implying the significance of horizontal transfer in their proliferation. These results and facts will be helpful to understand the abundance and distribution of ARGs from antibiotic production wastewater treatment systems.


Assuntos
Resistência Microbiana a Medicamentos/genética , Paromomicina/química , Ribostamicina/química , Espiramicina/química , Águas Residuárias/química , Aerobiose , Anaerobiose , Bactérias/efeitos dos fármacos , Bactérias/genética , Transferência Genética Horizontal , Mutação , Paromomicina/farmacologia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Ribostamicina/farmacologia , Esgotos , Espiramicina/farmacologia
19.
J Biomol Struct Dyn ; 35(10): 2077-2089, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27392082

RESUMO

The binding of neomycin sulfate (NS)/paromomycin sulfate (PS) with DNA was investigated by fluorescence quenching using acridine orange (AO) as a fluorescence probe. Fluorescence lifetime, FT-IR, circular dichroism (CD), relative viscosity, ionic strength, DNA melting temperature, and molecular docking were performed to explore the binding mechanism. The binding constant of NS/PS and DNA was 6.70 × 103/1.44 × 103 L mol-1 at 291 K. The values of ΔHθ, ΔSθ, and ΔGθ suggested that van der Waals force or hydrogen bond might be the main binding force between NS/PS and DNA. The results of Stern-Volmer plots and fluorescence lifetime measurements all revealed that NS/PS quenching the fluorescence of DNA-AO was static in nature. FT-IR indicated that the interaction between DNA and NS/PS did occur. The relative viscosity and melting temperature of DNA were almost unchanged when NS/PS was introduced to the solution. The fluorescence intensity of NS/PS-DNA-AO was decreased with the increase in the ionic strength. For CD spectra of DNA, the intensity of positive band at nearly 275 nm was decreased and that of negative band at nearly 245 nm was increased with the increase in the concentration of NS/PS. The binding constant of NS/PS with double-stranded DNA (dsDNA) was larger than that of NS/PS with single-stranded DNA (ssDNA). From these studies, the binding mode of NS/PS with DNA was evaluated to be groove binding. The results of molecular docking further indicated that NS/PS could enter into the minor groove in the A-T rich region of DNA.


Assuntos
Laranja de Acridina/química , DNA de Cadeia Simples/química , DNA/química , Corantes Fluorescentes/química , Neomicina/química , Paromomicina/química , Animais , Sítios de Ligação , Bovinos , Ligação de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Concentração Osmolar , Soluções , Temperatura , Termodinâmica , Viscosidade
20.
Eur J Pharm Sci ; 92: 74-85, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27381880

RESUMO

This research aims towards developing an alternative therapy against Cryptosporidium parvum using bioadhesive paromomycin and diloxanide furoate-loaded microspheres. Microspheres were prepared using chitosan and poly(vinyl alcohol) and two types of cyclodextrins (ß-CD and DM-ß-CD) for the potential use of treating cryptosporidiosis. This pathogen is associated with gastrointestinal illness in humans and animals. Microparticle formulations were characterized in terms of size, surface charge, drug release and morphology. In vivo bioadhesion properties of CHI/PVA microspheres were also evaluated in mice. Finally, the in vivo efficacy of CHI/PVA microspheres against C. parvum was tested in neonatal mouse model. In this work, microspheres prepared by spray-drying showed spherical shape, diameters between 6.67±0.11 and 18.78±0.07µm and positively surface charged. The bioadhesion studies demonstrated that MS remained attached at +16h (post-infection) to the intestinal cells as detected by fluorescence. This finding was crucial taking use of the fact that the parasite multiplication occurs between 16 and 20h post-infection. The efficacy of treatment was determined by calculating the number of oocysts recovered from the intestinal tract of mice after 7days of post-infection. Mice receiving orally administered microspheres with and without drug exhibited significantly lower parasite loads compared with the control mice. Ultrastructural observations by TEM bring to light the uptake of smallest particles by enterocytes associated with conspicuous changes in enterocytic cells. Completely recovery of cell morphology was detected after 24h of first inoculation with MS. CHI/PVA microspheres appear to be a safe and simple system to be used in an anticryptosporidial treatment. The distinctive features of neonatal mice requires further work to determine the suppressive effect of this particulate delivery system on C. parvum attachment in other animal models.


Assuntos
Antiprotozoários/administração & dosagem , Criptosporidiose/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Furanos/administração & dosagem , Microesferas , Paromomicina/administração & dosagem , Adesividade , Animais , Animais Recém-Nascidos , Antiprotozoários/química , Antiprotozoários/uso terapêutico , Quitosana/química , Criptosporidiose/parasitologia , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/isolamento & purificação , Ciclodextrinas/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Fluoresceína-5-Isotiocianato/química , Furanos/química , Furanos/uso terapêutico , Intestinos/química , Camundongos , Oocistos/efeitos dos fármacos , Carga Parasitária , Paromomicina/química , Paromomicina/uso terapêutico , Álcool de Polivinil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...